Int. J. Solids Structures Vol. 24, No. 2, pp. 153-163, 1988 0020-7683/88 $3.00+ .00
Printed in Great Britain. € 1988 Pergamon Journals Ltd.

UNDERCONSTRAINED STRUCTURAL SYSTEMS

E. N. KuzNETSov
Department of General Engineering, University of Iilinois, Urbana, IL 61801, U.S.A.

(Received 4 March 1987 ; in revised form 20 June 1987)

Abstract—Underconstrained structural systems have fewer independent constraints than necessary
to be geometrically invariant. Yet these systems can be statically indeterminate, with far-reaching
implications for their kinematic mobility. In particular, such a system may possess a unique
geometric configuration, in which it lacks finite mobility and allows a stable self-stress. The possi-
bility of stable self-stress is shown to be a statical (as opposed to geometric) criterion for under-
constrained systems with only infinitesimal kinematic mobility. Both local and global properties
of underconstrained systems are investigated within the context of statical-kinematic interrelations.
Among these, the relation between the equilibrium loads and configurations is of special interest as
it underlies the concept of statically controlled geometry.

INTRODUCTION

An analytical criterion of a geometrically invariant (stiff) system was formulated by
Mobius[1] for an assembly of » solids constrained in their motion by six external supports
and interacting at p points where mutual normal contact forces develop. Such an assembly
is stiff when p > 6(n—1). Stating immediately that this condition is necessary but not
sufficient, Mobius proceeds with a thorough investigation of exceptional systems which
satisfy his criterion but are not stiff. He reveals three interrelated properties of such systems :
(a) they possess only infinitesimal mobility ; (b) when the equations of equilibrium allow a
solution, it is not unique ; (c) each structural component has a maximum or minimum size
compatible with other members of the assembly.

When formulating a stiffness criterion for pin-bar systems, Maxwell[2] reversed the
roles of joints and bars by considering the former as nodal points and the latter as
constraints. More interestingly, he recognized the existence of exceptional systems of
the opposite nature: having fewer constraints than necessary, these systems are under-
constrained and yet kinematically immobile. Maxwell associated such exceptional cases
with the presence of maximum or minimum length bars.

Mohr[3] found that a maximum or minimum length is a general condition for the
statical possibility of self-stress in kinematic chains, including underconstrained ones. Kine-
matic properties of underconstrained systems were studied in more detail by Levi-Civita
and Amaldi[4]. In their monograph a structural system was modelled as an assembly of
material points linked by ideal positional constraints representing the structural members.
Then the kinematic properties of the system are fully determined by a compatible set of
constraint equations

F(Xiyo X0, Xy) =0, i=12,...1 (1)

The functions F; relate the N generalized coordinates X, to the implicitly present geometric
parameters of the system (member sizes, linear and angular distances, etc.). The linearized
equations derived by differentiating eqn (1) at the solution point X, = X involve infini-
tesimal virtual displacements x,

Here and below a repeated (dummy) subscript denotes summation. By employing the
principle of virtual work, equilibrium equations in the unknown generalized constraint
reactions, A;, are obtained from eqns (2)
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FoA, =P,. (3)

When the rank r of the Jacobian Fj, equals ¥, it follows from eqns (2) that all x, = 0
and the system is geometrically invariant. For an underconstrained system, r < N and the
outcome depends on the relation between r and I. When r = I a non-zero solution for x,
exists and the system allows displacements. At r < I, the equilibrium eqns (3), in the absence
of external loads P,, admit at least one set of A, 0. This set is used to form a linear
combination of constraint equations expanded in power series

AlFox,+ (/) FimXpx, + -] = 0. 4

On multiplying out, the first product vanishes and the kinematic properties of the system
are determined by the remaining quadratic form. When the form is definite, all x, = 0 and
X, = X! isanisolated solution of eqns (1) ; the system lacks kinematic mobility and possesses
a unique configuration. For this reason, such systems are classified in Ref. {4] as “exceptional
invariant systems”. It seems more appropriate to call them quasi-variant, since they
represent an exceptional, singular case of underconstrained systems, which in general are
kinematically mobile (variant).

More recent research on underconstrained structural systems has been initially stimu-
lated by the invention of tensegrity systems[5-8] and the proliferation of modern tensile
structures[9-12]. Most of the research has been problem oriented[13, 14}, with main appli-
cations to cable systems and membranes, especially their prestressed shape finding. This
problem is usually solved numerically, by means of non-linear elastic analysis, although the
researchers{15] are aware of the purely statical-kinematic nature of the problem. For
some regular systems—axisymmetric geodesic and Chebyshev nets, and underconstrained
axisymmetric 3-webs—<closed form first integrals were obtained[16-18], establishing the
entire set of prestressed shapes.

This paper deals with general statical-kinematic interrelations and characteristic
properties of underconstrained structural systems, with an emphasis on statically indeter-
minate ones.

ANALYTICAL CRITERION AND BASIC PROPERTIES OF QUASI-VARIANT SYSTEMS

The linear combination (4) of constraint equations can be modified by solving eqns
(2) in terms of (N —r) independent displacements x, and expressing all N displacements as

Xy = X, (G, =1atn=p). (%)
This enables expansion (4) to be rewritten in independent displacements[11]
(/2 FnAip Xy Xy + -+ = (1/2) by x,x,+ - =0 (6)

with the coefficients b,, evaluated by summation. When the quadratic form in expansion
(6) is definite or indefinite, the system is, respectively, immobile or mobile. When the
quadratic form is semidefinite, higher-order terms of expansion (6) must be considered. The
presence of third-order terms indicates mobility while their absence calls for the evaluation
of next-order terms.

The existence of a non-trivial solution A, # 0 is a necessary condition for any one
of the constraint functions F, in egn (1) to have an extremum compatible with the fixed
values of all the remaining functions. The type of extremum depends on the character of
the quadratic (or higher-order) form in expansion (6). A strict constrained minimum or
maximum of just one of the F; entails the same property for all of them, and constitutes a
sufficient analytical criterion for a quasi-variant system.

Physically, the existence of A; # 0 indicates statical possibility of initial forces (self-
stress). The leading term in expansion (6) is the lowest-order differential of the work done
by the initial forces on virtual displacements compatible with the constraint conditions. If
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Fig. 1. Quasi-variant system (infinitesimal mechanism) of second order.

this work is strictly positive the state of self-stress is stable. Thus, an underconstrained
system allowing a stable self-stress is quasi-variant.

A few clarifying remarks are in order. In what follows, the term “self-stress” is taken
to mean just a non-trivial solution to homogeneous equilibrium equations, i.e. a set of
statically possible initial forces. The term “state of self-stress” implies the actual state of a
system. As is readily seen, it is just the statical possibility (and not the actual state) of a
stable self-stress that constitutes the statical criterion of a quasi-variant system. Indeed,
only the formal existence of A; # 0 is necessary in the above criterion, and just definiteness,
rather than positive definiteness, of the quadratic form (6) entails x, = 0. Note that the
stability in question is of kinematic, or geometric nature, since the foregoing reasoning does
not involve any notion of elasticity. Thus, a quasi-variant system is only kinematically
immobile and is nothing but an infinitesimal mechanism with either a finite or an infinite
number of degrees of freedom. If made of a real material, such a system allows first-order
displacements at the expense of second- or higher-order deformations of the structural
members. In fact, the order of smallness of the constraint variations resulting in first-order
displacements is a general measure of the deformability of any system, from invariant to
mobile. For a quasi-variant system, this measure evolves as a by-product in analyzing the
lowest-order form in expansion (6).

Finally, the generalized constraint reactions, A;, appearing in the preceding equations
are not the actual member forces, N,. The latter are evaluated by equating two expressions
for virtual work (ith member)

AOF; = N6l; (no summation) )

where d/; is the infinitesimal displacement corresponding to N,. For a constraint preserving
a certain distance, /,;, a convenient representation is

FiX,) = (X)) =15 = 0. ®)
Then
OF, = 216l; (no summation) C)]
and
N; =2[;A; (no summation). (10)

Note that the generalized reactions A, corresponding to constraint conditions of the form
of eqn (8) are identical to the “force densities” in Ref. [12).

The criterion for a quasi-variant system based on the analysis of expression (6), is
sufficient but not necessary as demonstrated by the following.

Example. Constraint equations for the system in Fig. 1 are
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I+Gh=X,)—h =0, (Xs+D*+Xi-I*=0,
(Xs— X)) 4+ X, — X)) —h* =0, (I-X5)*+XI-1>=0.
(Xs—X3) 4+ (Xg— X)) —h? =0,

In the given configuration, X{=X{=X?=0, X)=2h X{=h, X} =0, and (upon
dropping the scalar factor 2) the matrix of linearized constraint eqns (2) is

0 —h
0 h O —h
F) = 0 h 0 (—h|. (11)
I 0
-1 0

The rank of this matrix is 4 and the solution of the system in terms of independent
displacements, x,; and x,, is x, = x, = x¢ = 0, x5 = 0. Transposing the matrix and solving
the resulting system of equilibrium equations yields a non-trivial solution A; = A, =
A;=0,A,= A5 = A. An attempt to construct expansion (6) in the independent displace-
ments x; and x; leads nowhere : the quadratic form vanishes and no higher-order terms
exist in the power series expansions of F,.

The situation is resolved by considering a subsystem comprised of the members with
non-zero constraint reactions (in this case—by the horizontal bars 4 and 5). Taking x, as
an independent displacement gives rise to a one-term quadratic form, AxZ, Hence, x4 = 0
to at least the third order and the variable X in the constraint equations can be fixed:
Xs = X{. Then the parenthesized term in matrix (11) vanishes and the equilibrium equations
obtained by transposition allow a non-trivial solution, A, = A, = A; = A*. The resulting
quadratic form, A*(x? +x3~x,x;), is definite, so that x, = x; = 0 and the entire system
possesses a unique geometric configuration. However, the small displacements x, and x;
would require horizontal bar elongations of only the third order of smallness. Following
Koiter[19], such a system can be classified as an infinitesimal mechanism of second order.

Since the rank of the equilibrium matrix (3) for an underconstrained system is r < N,
the system in a given geometric configuration can balance only certain external loads. These
are called equilibrium loads and are representable as linear combinations of the matrix
columns with arbitrary A;. There is no one-to-one correspondence between the equilibrium
loads and geometric configurations : there are r linearly independent equilibrium loads for
a given configuration, whereas, generally, there is only one equilibrium configuration for a
given load. This peculiar feature of underconstrained systems underlies a unique method
of obtaining precise geometric forms by statical means. Upon obtaining a desired con-
figuration, the system can be either immobilized (by introducing additional constraints or
fixing the system with a matrix) or actively controlled (by monitoring the external loads)
using some kind of feedback.

An underconstrained system subjected to a non-equilibrium load must change its
configuration in order to balance the load. This makes the corresponding statical problem
not only geometrically nonlinear but, in a certain sense, nonlinearizable. Specifically, the
load increment method widely used for non-linear problems is, as a rule, inapplicable in
this situation : however small the load increment, the linearized system of equations, like
the original one, allows a solution only for equilibrium loads. This is not the case with a
prestressed quasi-variant system. Under a general load increment, it too must change its
configuration before coming to equilibrium. Nevertheless, the presence of initial forces
makes linearization feasible at least as a first step of an incremental solution. The latter
exhibits two dissimilar modes of resisting external loads. In supporting an equilibrium load
the stiffness is of conventional nature and the presence of prestress is irrelevant, whereas in
resisting a non-equilibrium load the stiffness depends on the prestress level and may even
be independent of the member properties. This question was addressed in more detail in
Refs [11, 20] and, with application to cable nets, in Ref. [21].
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STATICAL DETERMINACY AND INDETERMINACY AND RELATED LOCAL
AND GLOBAL PROPERTIES

Conventional definitions of a statically determinate (indeterminate) system refer to the
possibility (impossibility) of determining the member forces from the equations of statics
alone. These definitions and their underlying concepts have evolved in structural mechanics
of geometrically invariant systems with small deformations. For geometrically non-linear
systems the conventional concepts are shaky if not counterproductive, especially so for
underconstrained systems. Yet, statical determinacy or indeterminacy is not just a label
indicating the degree of complexity of a computer-unaided analysis. Rather, it is a very
informative and even fruitful concept, reflecting the most fundamental features of structural
systems (such as uniqueness or nonuniqueness of a statically possible state with a given
load ; behaviour under thermal action, member yielding, support settlement or imprecision
in member sizes ; possibility of prestress, and so on). Thus, the need for a logically consistent
and universal concept of statical determinacy is obvious. It can be fulfilled by accepting the
following.

Definition. Statical determinacy (indeterminacy) is the property of uniqueness (non-
uniqueness) of a solution to the homogeneous system of equilibrium equations.

This feature, usually perceived as one of the formal manifestations of statical deter-
minacy is, in fact, its essence and the key to the resolution of the controversy. Indeed,
equations of statics pertain to the system in its final state (regardless of whether or not it
is known in advance) which includes the deformed configuration of the system and the
condition of each member (e.g. yielding or disengagement). Accordingly, information
obtained from the equilibrium equations is characteristic of the particular state of the
system and not of the system per se. As a result, some relevant parameters and properties
are of local rather than global nature (in the state space), and can differ for the different
states of one and the same system. By implicitly recognizing this fact the above definition
(a) comprises all conceivable types of structural systems; (b) reduces to the conventional
definition when applied to an invariant linear system ; (c) provides a rigorous and universal
measure of the degree of statical indeterminacy

DSI=1I—r (12)

where I is the number of constraints and r is the equilibrium matrix rank. In fact, DST is
nothing but the number of dependent constraints, i.e. those represented by linearly depen-
dent constraint functions. The dependence can be either global (when functions F; in eqns
(1) are dependent) or local (when only the linearized functions in eqns (2) and (3) are
dependent). In the latter case the matrix rank restores upon exiting from the singular
configuration.

The foregoing reasoning holds for certain other attributes of the statical-kinematic
analysis based on the local power series expansions (2) of constraint functions. The two
most important characteristics are : the number of linearly independent equilibrium loads

NEL=r (13)

and the number of degrees of freedom (the degree of kinematic indeterminacy)

DKI = N—r (14)

where N is the total number of generalized coordinates. Note that some or even all of the
degrees of freedom comprised by DKI might be realizable only as infinitesimal displace-
ments. For a geometrically invariant system
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Fig. 2. Transformations of statically indeterminate finite mechanism: (a), (b) small perturbations
of original and folded configurations; (c), (d) geometrically invariant, statically determinate systems
resulting from bar length variations.

r=N<I (15)

and the above rank-related characteristics coincide with their respective conventional
counterparts.

Finally, a few curious incidents of conservation based on two global topological
invariants of a structural system

DSI+NEL=1 (16)
DKI+NEL = N (17)
DKI—-DSI = N—1. (18)

The assembly in Fig. 2 is a simple yet unexpectedly comprehensive example of possible
situations. The constraints in this system are globally dependent and DS/ = DKI =1 in
any ordinary configuration. The folded configuration in Fig. 2(b) is singular: the matrix
rank drops, raising both DS and DKI to 2. Accordingly, in this configuration the system
allows two linearly independent states of self-stress (initial forces in any two bars can be
assigned arbitrarily); and two independent displacements (the horizontal bar can undergo
a vertical translation and an infinitesimal tilt).

Among continuous underconstrained systems, membrane shelis and cable nets are the
most thoroughly studied. As an example, consider a net with rhombic cells (a Chebyshev
net) attached to a rigid closed contour. This is an underconstrained system with a large
number of degrees of freedom. In an ordinary configuration it is statically determinate,
with just one statically possible state for each equilibrium load. However, the net allows
numerous singular configurations in which it becomes statically indeterminate and, possibly,
quasi-variant.

A most interesting and rich class of singular configurations of a Chebyshev net is the
class of translation nets (Fig. 3). This type of net was shown to be statically indeterminate
to the first degree and the self-stress was obtained in a closed form[11]. When the surface

7 L
e R
- ,Tz *k"
A
i e
a) b)

Fig. 3. Statically indeterminate Chebyshev net : (a) state of self-stress in an anticlastic net; (b) one
of the statically possible states for a given load in a sinclastic net.
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Fig. 4. Ordinary and singular configurations: (a) infinitesimal mechanism with internal indeter-
minacy (L, = L;); (b) infinitesimal mechanism with external indeterminacy (X = 0).

is anticlastic (saddle-shaped) (Fig. 3(a)), the net can be prestressed. For a sinclastic (concave)
net (Fig. 3(b)) the self-stress is unrealizable but in other ways the indeterminacy is quite
tangible. It can be utilized by choosing and implementing the force ratio, T',/T,, in the two
cable arrays which is most favorable for the support structure. Asymptotic nets of anticlastic
surfaces are quasi-variant and indeterminate to a high degree. A prominent example of this
class is a segment of an axisymmetric Chebyshev net (like a basketball net) stretched between
two edge rings, which has the form of a pseudosphere[17]. Finally, a flat Chebyshev net is,
obviously, quasi-variant.

KINEMATIC MOBILITY AND SELF-STRESS

This topic is closely related to the following question raised by Tarnai[22]: What
criterion determines whether self-stress stiffens an assembly which is both statically and
kinematically indeterminate?

It appears that this criterion is the stability of self-stress. Moreover, it can be stated
that any physically realized self-stress in a kinematically indeterminate system has a stiff-
ening effect. Indeed, to be realizable, a statically possible, self-equilibrated state must be at
least locally stable, and then, by definition, the system will resist any sufficiently small
perturbation. Applying this observation to an assembly with only local statical and kine-
matic indeterminacy is straightforward. Such a system is adequately constrained and, upon
exiting from the singular configuration (due to some variation in geometry), becomes
determinate and geometrically invariant. Examples in Fig. 4 represent the two basic types
of such systems—one with internal (at L, = L,) and the other with external (at H = 0)
indeterminacy. In their singular configurations both systems are infinitesimal mechanisms
and allow a stable state of self-stress. These configurations can be analytically detected by
Timoshenko’s unit load test which is, in effect, a check of the equilibrium matrix rank and
conceptually can be traced back to Mobius[1].

Going back to underconstrained systems, recall that these are globally kinematically
indeterminate but allow singular configurations where they acquire statical indeterminacy
as well. If the possible self-stress is unstable the system is a finite mechanism in a singular
(“‘dead center”) configuration ; the possibility of a stable self-stress characterizes a quasi-
variant system (a multifreedom infinitesimal mechanism). The work of initial forces (6) is
also the work of external perturbation forces on the same virtual displacements. The
composition of the leading term in expansion (6) shows that the system resistance to
perturbations, obtainable by differentiation, is always proportional to the magnitude of
initial forces, A;, but can be nonlinear in displacements. Accordingly, a stable state of self-
stress has a stiffening effect, which is of the same order as the order of the infinitesimal
mechanism. In particular, if the mechanism is higher than first order, the tangent stiffness
matrix is singular, yet the stiffening effect exists.

A curious and ostensibly paradoxical type of structural system is an assembly with
global statical and kinematic indeterminacy, i.e. a finite mechanism apparently allowing
self-stress in any configuration. For the planar assembly in Fig. 2(a), the initial forces are
easily found but expression (6) vanishes. Thus, statical-kinematic analysis treating struc-
tural members as undeformable shows only that the system is kinematically mobile and
that self-stress is statically possible. In investigating this system, two distinct situations must
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be addressed. First, prestressing may change the natural (strain-free) member sizes such
that the assembly ceases to be a finite mechanism. For example, if the horizontal bar bends,
the system loses kinematic mobility and becomes an infinitesimal mechanism. A more
interesting situation arises when the assembly retains kinematic mobility in its prestressed
configuration, i.e. has the appropriate member sizes after prestress. This is the case if the
horizontal bar either originally has a camber or is straight and perfectly rigid in bending
(but not in compression). Assuming the second alternative, hereafter the bar is modelled
as a spring sliding along a rigid rod.

Examining this kind of prestressed finite mechanism, note, first of all, that stable
equilibrium must be ruled out. Indeed, since purely kinematic motion preserves the member
sizes and forces, it requires no increase in the elastic strain energy, which in the absence of
external loads could be the only source of a restoring force. Hence, a prestressed finite
mechanism is at best at neutral equilibrium. However, even this is feasible only in exceptional
trivial cases of rigid motion (e.g. a tensioned chain with one end hinged and the other
sliding along a circular guide). In general, a kinematic perturbation upsets equilibrium of
the existing member forces, since their nodal resultants will no longer add up to zero. This
means that adjacent equilibrium states are absent and the self-stress, although statically
possible, is unstable.

Thus, finite kinematic mobility and state of self-stress are incompatible : they cannot
exist in one and the same assembly simultaneously. Accordingly, any prestressed assembly
lacks finite kinematic mobility and is, at most, an infinitesimal mechanism; conversely, a
system with finite kinematic mobility cannot be prestressed and retain its mobility. In the
light of this conclusion it is obvious, for example, that self-stress is unrealizable for a class
of statically indeterminate finite mechanisms with cyclic and reflection symmetries studied
in Ref, [23].

The foregoing observations can be summed up in the following statement, which
constitutes the answer to Tarnai’s question. A statically and kinematically indeterminate
system with a given fixed geometry can be in a state of self-stress if, and only if, it is an
infinitesimal mechanism ; in this case the state of self-stress has a stiffening effect of the
same order as the order of the mechanism.

To illustrate the entire variety of possible situations and to quantify the preceding
statements, consider again the assembly in Fig. 2(a). Let the statically possible self-stress

N;=N;=N,, N, = —2Ny,, Ny=N;=0

be induced while restraining the system. Upon its release, the system will fold up. Equi-
librium in the folded configuration requires the elastic nodal displacements in the horizontal
direction

X = X3 = —X3/2 = No/Bk, +k;) = x (19)
so that the member forces and lengths become

N] == N3 = —N2/2 = N4 = “""Ns = 3k[N0/(3k1+k_,) = N
h=1ly=s(1-8), ly=s(14+28), &=x/s (20)
Li=10+3n), Is=I101-3n), n=x/L
Here k, = IJEA, and k, = s/EA, are the stiffness parameters for the horizontal bar and
support bars, respectively. Note that & and 5, however small they may be, are finite.

To investigate the stability of the state (20) the system is given a small perturbation
and the elastic strain energy increment is evaluated

AU = Ni(al)i+ %k,(sl),z.

Within the required accuracy the elastic strains are
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& = (o420l (i=1,2,3; no summation)
e =024+ (xy—x )Ly, &5 =024+ (x5—x3)/ls.

Since the horizontal bar does not bend (Fig. 2(b))

yi=y-—al, yi=y+al

and only five out of the six nodal displacements are independent. After the necessary
substitutions and rearrangements with consistently maintained accuracy, and upon the
introduction of § = y/s, AU becomes

AU = 3Ns¢(8—a)* + N(@)*[s+k,(x} +x3+x3)2+ k[ (x; — 1) + (x5 —x2)*)j2. (21)

At N > 0 or, which is the same, N, > 0, form (21) is positive definite. Thus, with the
middle bar in compression, the folded configuration is stable and the system is a self-stressed
infinitesimal mechanism ; purely kinematic displacements are impossible, but first-order
elastic displacements require only second-order strains.

At N < 0, form (21) is indefinite and the folded configuration of Fig. 2(b) is unstable.
In this case the combination of natural bar lengths

l<ii=1l3 I5=15

is compatible, and the system acquires a configuration (Fig. 2(c)) which is geometrically
invariant and statically determinate (hence, stress free). Although the system can be forced
into the self-stressed configurations shown in Figs 2(a) and (b), it will not stay in either of
them. Similarly, a set of bars with

B=1=13 13<I

can be assembled (Fig. 2(d)) to form an invariant system. It can be forced into two distinct
folded self-stressed configurations—Ieft and right, both of them unstable. Thus, different
combinations of the bar lengths can render the considered system invariant, variant or
quasi-variant.

Taking advantage of eqn (21) the response of the prestressed assembly (Fig. 2(b)) to
a vertical load, V, can be evaluated

8U[8a = 2NI*afs—6NsE(d—a) = 0
oU[06 = 6Nsté(6—a) =V

from which
a = Vs*/2NI?, & = V/6NE.

Expressing N and ¢ in terms of the original prestressing force with the aid of eqns (19) and
(20) gives

18N 36
= 2% 22
ski(3+k/k)* (22)
The structural response exemplified by solution (22) is weak, but otherwise quite
remarkable : the resistance of the system is proportional to the square of the prestressing
force N, and reduces with the increasing stiffness of the horizontal bar. This contrasts with
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Table 1
Resistance to § due to
System description and load type Prestress Member stiffness
Invariant system, arbitrary load ; any system, equilibrium load Nod EAS
Quasi-variant system (first order), non-equilibrium load Ngé E45°
“Prestressed finite mechanism”, non-equilibrium load NIS/EA = 4N 0

the response of other systems with a similar prestress level and typical member stiffness,
EA.Table 1 compares three types of systems in terms of respective external loads producing
the same non-dimensional displacement é.

In the third case, both the infinitesimal mechanism and the stiffening effect of self-
stress are first order. This is seen from the right-hand side of the last expression (assuming
the elastic strain &, is finite).

CONCLUSION

A peculiar combination of interrelatéd statical and kinematic properties governs the
behavior of underconstrained systems, in particular, statically indeterminate ones. The most
prominent potential feature is the statical possibility of a stable self-stress which is shown
to be a necessary and sufficient criterion of a quasi-variant system. However, even when
the state of self-stress is unstable and, therefore, physically unrealizable, statical inde-
terminacy in underconsirained systems is a useful property. For a system of a given
structural topology, different combinations of member lengths can render the system in-
variant, variant or quasi-variant. Furthermore, different geometric configurations of a
variant system may differ in their respective degrees of statical and kinematic indeter-
minacy and the number of independent equilibrium loads. The intricate interrelation
between the equilibrium loads and configurations underlies the concept of statically con-
trolled geometry which is instrumental in the obtainment and active control of precise
geometric shapes.
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